资源类型

期刊论文 298

年份

2023 36

2022 36

2021 27

2020 26

2019 18

2018 22

2017 13

2016 12

2015 18

2014 11

2013 13

2012 10

2011 7

2010 5

2009 8

2008 5

2007 11

2006 1

2005 2

2004 2

展开 ︾

关键词

重金属 3

二氧化碳 2

固体氧化物燃料电池 2

带传动 2

显微硬度 2

有色金属工业 2

重金属废水 2

金属带 2

2035 1

Deep metal mining 1

EDI 1

Mitigation 1

Monitoring 1

PEDOT:PSS 1

Rockburst 1

SO3 1

Warning 1

ZEBRA 电池 1

cellular automaton模型 1

展开 ︾

检索范围:

排序: 展示方式:

Metal salts with highly electronegative cations as efficient catalysts for the liquid-phase nitration

Shenghui Zhou, Kuiyi You, Zhengming Yi, Pingle Liu, Hean Luo

《化学科学与工程前沿(英文)》 2017年 第11卷 第2期   页码 205-210 doi: 10.1007/s11705-017-1625-3

摘要: Metal salts with highly electronegative cations have been used to effectively catalyze the liquid-phase nitration of benzene by NO to nitrobenzene under solvent-free conditions. Several salts including FeCl , ZrCl , AlCl , CuCl , NiCl , ZnCl , MnCl , Fe(NO ) ·9H O, Bi(NO ) ·5H O, Zr(NO ) ·5H O, Cu(NO ) ·6H O, Ni(NO ) ·6H O, Zn(NO ) ·6H O, Fe (SO ) , and CuSO were examined and anhydrous FeCl exhibited the best catalytic performance under the optimal reaction conditions. The benzene conversion and selectivity to nitrobenzene were both over 99%. In addition, it was determined that the metal counterion and the presence of water hydrates in the salt affects the catalytic activity. This method is simple and efficient and may have potential industrial application prospects.

关键词: metal salts     electronegativity     nitrobenzene     NO2     catalytic nitration    

Effects of two transition metal sulfate salts on secondary organic aerosol formation in toluene/NO

Biwu CHU, Jiming HAO, Junhua LI, Hideto TAKEKAWA, Kun WANG, Jingkun JIANG

《环境科学与工程前沿(英文)》 2013年 第7卷 第1期   页码 1-9 doi: 10.1007/s11783-012-0476-x

摘要: Aerosol phase reactions play a very important role on secondary organic aerosol (SOA) formation, and metal-containing aerosols are important components in the atmosphere. In this study, we tested the effects of two transition metal sulfate salts, manganese sulfate (MnSO ) and zinc sulfate (ZnSO ), on the photochemical reactions of a toluene/NO photooxidation system in a 2 m smog chamber. By comparing photochemical reaction products of experiments with and without transition metal sulfate seed aerosols, we evaluated the effects of transition metal sulfate seed aerosols on toluene consumption, NO conversion and the formation of ozone and SOA. MnSO and ZnSO seed aerosols were found to have similar effects on photochemical reactions, both enhance the SOA production, while showing negligible effects on the gas phase compounds. These observations are consistent when varying metal sulfate aerosol concentrations. This is attributed to the catalytic effects of MnSO and ZnSO seed aerosols which may enhance the formation of condensable semivolatile compounds. Their subsequent partitioning into the aerosol phase leads to the observed SOA formation enhancement.

关键词: manganese sulfate     zinc sulfate     seed aerosols     toluene photooxidation     secondary organic aerosol    

A new regeneration approach to cation resins with aluminum salts: application of desalination by its

Zhigang LIU, Shaomin ZHU, Yansheng LI

《环境科学与工程前沿(英文)》 2012年 第6卷 第1期   页码 45-50 doi: 10.1007/s11783-010-0262-6

摘要: A novel method for the regeneration of cation exchange resins by aluminum (Al) salts was investigated in order to improve the regeneration efficiency of resins and reduce the dosage of regenerant. The influences of Al concentration and the pH of regeneration solution on resin transformation had been studied. The desalination experiments were carried out to evaluate the characteristics of the Al form resins. Experimental results showed that the regeneration rate of resins was strictly dependent on Al concentration and the pH of the solution. Compared to the conventional regeneration method, the Al form mixed bed exhibited the same desalination capability as the H form mixed bed (MB), and the total organic carbon (TOC) removal was up to 90%, clearly higher than that of the H form. Al salt solution could be utilized repeatedly to regenerate Al form resins.

关键词: aluminum (Al) form resins     desalination     mixed bed (MB)     regeneration    

Corrosion behavior of metallic alloys in molten chloride salts for thermal energy storage in concentrated

Wenjin Ding, Alexander Bonk, Thomas Bauer

《化学科学与工程前沿(英文)》 2018年 第12卷 第3期   页码 564-576 doi: 10.1007/s11705-018-1720-0

摘要:

Recently, more and more attention is paid on applications of molten chlorides in concentrated solar power (CSP) plants as high-temperature thermal energy storage (TES) and heat transfer fluid (HTF) materials due to their high thermal stability limits and low prices, compared to the commercial TES/HTF materials in CSP-nitrate salt mixtures. A higher TES/HTF operating temperature leads to higher efficiency of thermal to electrical energy conversion of the power block in CSP, however causes additional challenges, particularly increased corrosiveness of metallic alloys used as containers and structural materials. Thus, it is essential to study corrosion behaviors and mechanisms of metallic alloys in molten chlorides at operating temperatures (500–800 °C) for realizing the commercial application of molten chlorides in CSP. The results of studies on hot corrosion of metallic alloys in molten chlorides are reviewed to understand their corrosion behaviors and mechanisms under various conditions (e.g., temperature, atmosphere). Emphasis has also been given on salt purification to reduce corrosive impurities in molten chlorides and development of electrochemical techniques to in-situ monitor corrosive impurities in molten chlorides, in order to efficiently control corrosion rates of metallic alloys in molten chlorides to meet the requirements of industrial applications.

关键词: corrosion mechanisms     impurities     metallic corrosion     salt purification     electrochemical techniques    

Deep eutectic ionic liquids based on DABCO-derived quaternary ammonium salts: A promising reaction medium

Muhammad Faisal, Azeem Haider, Quret ul Aein, Aamer Saeed, Fayaz Ali Larik

《化学科学与工程前沿(英文)》 2019年 第13卷 第3期   页码 586-598 doi: 10.1007/s11705-018-1788-6

摘要: Owing to the directional H-bonding, coordination and -stacking abilities, terpyridines have been widely used as supramolecular tectons in molecular architectures, skeletons in molecular devices and metallopolymers, and are gaining importance in medicinal chemistry. In this paper, we have synthesized, characterized and applied deep eutectic ionic liquids (DEILs) based on 1,4-diazabicyclo[2.2.2]octane; triethylenediamine (DABCO)-derived quaternary ammonium salts for the preparation of terpyridines. These DEILs were synthesized through -alkylation of DABCO with haloalkanes (1-bromopentane or 1-bromoheptane) followed by mixing and heating with methanol or polyethylene glycol as a hydrogen bond donor. The synthesized DEILs were structurally characterized by IR and NMR. The formation of deep eutectic solvent was confirmed by freezing point depression, it composition was investigated through phase diagram, and its thermal stability was determined through differential scanning calorimetry, derivative thermogravimetry and thermal gravimetric analysis studies. Further, theseDEILswereinvestigatedfor theireffectivenesstowards synthesis of 2,2′:6′,2″-terpyridine, 3,2′:6′,3″-terpyridineand 4,2′:6′,4″-terpyridinederivatives through Kröhnke reaction. The results show that these three types of terpyridines can be obtained in reasonable yields (80% 97%) by the one-pot reaction of 2-, 3- or 4-acetylpyridine with a variety of aromatic aldehydes in the presence of DEIL as a reaction medium, sodium hydroxide as a base and ammonium acetate as a cyclizing agent. This methodology is highly efficient and cost-effective for synthesis of symmetrical as well as unsymmetrical terpyridines. Importantly, these DEILs can be reused several times without an obvious loss of activity and are non-toxic, low-volatile, biodegradable and highly thermally stable. Therefore, these DEILs as a non-conventional reaction medium for the synthesis of terpyridines provides appealing opportunities to be investigated in the domain of green synthesis.

关键词: terpyridine     deep eutectic solvent     ionic liquid     Kröhnke reaction     DABCO    

A ternary mechanism for the facilitated transfer of metal ions onto metal–organic frameworks: implications

《化学科学与工程前沿(英文)》   页码 1632-1642 doi: 10.1007/s11705-022-2187-6

摘要: Although metal–organic frameworks offer a new platform for developing versatile sorption materials, yet coordinating the functionality, structure and component of these materials remains a great challenge. It depends on a comprehensive knowledge of a “real sorption mechanism”. Herein, a ternary mechanism for U(VI) uptake in metal–organic frameworks was reported. Analogous MIL-100s (Al, Fe, Cr) were prepared and studied for their ability to sequestrate U(VI) from aqueous solutions. As a result, MIL-100(Al) performed the best among the tested materials, and MIL-100(Cr) performed the worst. The nuclear magnetic resonance technique combined with energy-dispersive X-ray spectroscopy and zeta potential measurement reveal that U(VI) uptake in the three metal–organic frameworks involves different mechanisms. Specifically, hydrated uranyl ions form outer-sphere complexes in the surface of MIL-100s (Al, Fe) by exchanging with hydrogen ions of terminal hydroxyl groups (Al-OH2, Fe-OH2), and/or, hydrated uranyl ions are bound directly to Al(III) center in MIL-100(Al) through a strong inner-sphere coordination. For MIL-100(Cr), however, the U(VI) uptake is attributed to electrostatic attraction. Besides, the sorption mechanism is also pH and ionic strength dependent. The present study suggests that changing metal center of metal–organic frameworks and sorption conditions alters sorption mechanism, which helps to construct effective metal–organic frameworks-based sorbents for water purification.

关键词: U(VI)     metal–organic frameworks     adsorption mechanism     metal node    

Functionalized activated carbon for the adsorptive removal of perchlorate from water solutions

Rovshan MAHMUDOV, Chinglung CHEN, Chin-Pao HUANG

《化学科学与工程前沿(英文)》 2015年 第9卷 第2期   页码 194-208 doi: 10.1007/s11705-015-1517-3

摘要: Two types of activated carbon, namely, Filtrasorb 400 and Nuchar SA, were functionalized by quaternary ammonium salts (quats), as to enhance perchlorate adsorption. Results showed that the adsorption of quats on Nuchar SA increased with increase in chain length (hydrophobicity) of quats. Filtrasorb 400, however, had limited uptake of long-chain quats such as dodecyltrimethylammonium and hexadecyltrimethylammoium (HDTMA). Results indicated that perchlorate removal by the functionalized activated carbon was directly related to the chain length of the modifying quats. Perchlorate removal by functionalized activated carbon increased with increase in chain length of the modifying quats and became less pH-dependent. Modified Nuchar SA had higher overall perchlorate removal capacity than the modified Filtrasorb F400, but was more strongly affected by pH than Filtrasorb 400. Activated carbon treated with HDTMA exhibited the best perchlorate removal capacity among all quats studied. Results indicated that tailoring the activated carbon surface with HDTMA rendered the activated carbon surface positively charged, which resulted in substantial increase in perchlorate removal compared to unfunctionalized activated carbons.

关键词: perchlorate     activated carbon     removal     functionalization     quaternary ammonium salts    

Effects of additive NaI on electrodeposition of Al coatings in AlCl

Tianyu Yao, Haiyan Yang, Kui Wang, Haiyan Jiang, Xiao-Bo Chen, Hezhou Liu, Qudong Wang, Wenjiang Ding

《化学科学与工程前沿(英文)》 2021年 第15卷 第1期   页码 138-147 doi: 10.1007/s11705-020-1935-8

摘要: Effects of NaI as an additive on electrodeposition of Al coatings in AlCl -NaCl-KCl (80-10-10 wt-%) molten salts electrolyte at 150°C were investigated by means of cyclic voltammetry, chronopotentiometry, scanning electron microscopy and X-ray diffraction (XRD). Results reveal that addition of NaI in the electrolyte intensifies cathodic polarization, inhibits growth of Al deposits and increases number density of charged particles. The electrodeposition of Al coatings in the AlCl -NaCl-KCl molten salts electrolyte proceeds via three-dimensional instantaneous nucleation which however exhibits irrelevance with NaI. Galvanostatic deposition results indicate that NaI could facilitate the formation of uniform Al deposits. A compact coating consisting of Al deposits with an average particle size of 3 μm was obtained at a current density of 50 mA∙cm in AlCl -NaCl-KCl molten salts electrolyte with 10 wt-% NaI. XRD analysis confirmed that NaI could contribute to the formation of Al coating with a preferred crystallographic orientation along (220) plane.

关键词: NaI     additive     electrodeposition     molten salts     Al coating    

Hierarchical porous carbon derived from one-step self-activation of zinc gluconate for symmetric supercapacitors with high energy density

《化学科学与工程前沿(英文)》 2023年 第17卷 第4期   页码 387-394 doi: 10.1007/s11705-022-2250-3

摘要: Porous carbons with high specific area surfaces are promising electrode materials for supercapacitors. However, their production usually involves complex, time-consuming, and corrosive processes. Hence, a straightforward and effective strategy is presented for producing highly porous carbons via a self-activation procedure utilizing zinc gluconate as the precursor. The volatile nature of zinc at high temperatures gives the carbons a large specific surface area and an abundance of mesopores, which avoids the use of additional activators and templates. Consequently, the obtained porous carbon electrode delivers a satisfactory specific capacitance and outstanding cycling durability of 90.9% after 50000 cycles at 10 A∙g–1. The symmetric supercapacitors assembled by the optimal electrodes exhibit an acceptable rate capability and a distinguished cycling stability in both aqueous and ionic liquid electrolytes. Accordingly, capacitance retention rates of 77.8% and 85.7% are achieved after 50000 cycles in aqueous alkaline electrolyte and 10000 cycles in ionic liquid electrolyte. Moreover, the symmetric supercapacitors deliver high energy/power densities of 49.8 W∙h∙kg–1/2477.8 W∙kg–1 in the Et4NBF4 electrolyte, outperforming the majority of previously reported porous carbon-based symmetric supercapacitors in ionic liquid electrolytes.

关键词: self-activation     zinc organic salts     abundant mesopores     symmetric supercapacitor     liquid electrolyte    

Sustainability of metal recovery from E-waste

Biswajit Debnath, Ranjana Chowdhury, Sadhan Kumar Ghosh

《环境科学与工程前沿(英文)》 2018年 第12卷 第6期 doi: 10.1007/s11783-018-1044-9

摘要:

Metal recovery techniques from electronic waste reported in literature.

Metal recovery processes followed in Industries from electronic waste.

Sustainability analysis of metal recovery processes from electronic waste.

关键词: E-waste     Metal recovery     Metal Recovery from E-waste (MREW)     Sustainability    

Optimizing iodine capture performance by metal–organic framework containing with bipyridine units

《化学科学与工程前沿(英文)》 2023年 第17卷 第4期   页码 395-403 doi: 10.1007/s11705-022-2218-3

摘要: Radioactive iodine exhibits medical values in radiology, but its excessive emissions can cause environmental pollution. Thus, the capture of radioiodine poses significant engineering for the environment and medical radiology. The adsorptive capture of radioactive iodine by metal–organic frameworks (MOFs) has risen to prominence. In this work, a Th-based MOF (denoted as Th-BPYDC) was structurally designed and synthesized, consisting of [Th63-O)43-OH)4(H2O)6]12+ clusters, abundant bipyridine units, and large cavities that allowed guest molecules diffusion and transmission. Th-BPYDC exhibited the uptake capacities of 2.23 g·g−1 and 312.18 mg·g−1 towards I2 vapor and I2 dissolved in cyclohexane, respectively, surpassing its corresponding analogue Th-UiO-67. The bipyridine units boosted the adsorption performance, and Th-BPYDC showed good reusability with high stability. Our work thus opened a new way for the synthesis of MOFs to capture radioactive iodine.

关键词: metal–organic framework     iodine     adsorption     nuclear waste     environmental remediation    

Selective capture and separation of xenon and krypton using metal organic frameworks: a review

《化学科学与工程前沿(英文)》 2023年 第17卷 第12期   页码 1895-1912 doi: 10.1007/s11705-023-2355-3

摘要: Xenon and krypton are widespread useful noble gases in commercial lighting, lasers, electronics, and medical industry. At the same time, radioactive noble gases may proliferate from used nuclear fuel and diffuse in open atmospheres. Metal organic frameworks as hotspot porous materials for gases uptake and separation are considered to be potential solutions. In this review, we comprehensively summarized recent researches on metal organic frameworks for selective capture and separation of xenon and krypton. Particularly, we followed the aspects of different optimal design strategies, including optimal pore/cage size and geometry, open metal sites, ions (anions and cations), and polar functional groups for enhancing the xenon adsorption and separation performances. Meanwhile, a comparison of each strategy and the mechanisms of xenon/krypton separation were pointed out. The separation of krypton from gases mixtures by dual-bed systems was further discussed. Finally, some existing challenges and opportunities for possible real applications were proclaimed.

关键词: metal organic frameworks     xenon     krypton     selective separation     used nuclear fuel    

Liquid metal thermal hydraulics R&D at European scale: achievements and prospects

《能源前沿(英文)》 2021年 第15卷 第4期   页码 842-853 doi: 10.1007/s11708-021-0743-2

摘要: A significant role for a future nuclear carbon-free energy production is attributed to fast reactors, mostly employing a liquid metal as a coolant. This paper summarizes the efforts that have been undertaken in collaborative projects sponsored by the European Commission in the past 20 years in the fields of liquid-metal heat transfer modeling, fuel assembly and core thermal hydraulics, pool and system thermal hydraulics, and establishment of best practice guidelines and verification, validation, and uncertainty quantification (UQ). The achievements in these fields will be presented along with the prospects on topics which will be studied collaboratively in Europe in the years to come. These prospects include further development of heat transfer models for applied computational fluid dynamics (CFD), further analysis of the consequences of fuel assembly blockages on coolant flow and temperature, analysis of the thermal hydraulic effects in deformed fuel assemblies, extended validation of three-dimensional pool thermal hydraulic CFD models, and further development and validation of multi-scale system thermal hydraulic methods.

关键词: liquid metal     thermal hydraulics     Europe    

Localized high-concentration electrolytes for lithium metal batteries: progress and prospect

《化学科学与工程前沿(英文)》 2023年 第17卷 第10期   页码 1354-1371 doi: 10.1007/s11705-022-2286-4

摘要: With the increasing development of digital devices and electric vehicles, high energy-density rechargeable batteries are strongly required. As one of the most promising anode materials with an ultrahigh specific capacity and extremely low electrode potential, lithium metal is greatly considered an ideal candidate for next-generation battery systems. Nevertheless, limited Coulombic efficiency and potential safety risks severely hinder the practical applications of lithium metal batteries due to the inevitable growth of lithium dendrites and poor interface stability. Tremendous efforts have been explored to address these challenges, mainly focusing on the design of novel electrolytes. Here, we provide an overview of the recent developments of localized high-concentration electrolytes in lithium metal batteries. Firstly, the solvation structures and physicochemical properties of localized high-concentration electrolytes are analyzed. Then, the developments of localized high-concentration electrolytes to suppress the formation of dendritic lithium, broaden the voltage window of electrolytes, enhance safety, and render low-temperature operation for robust lithium metal batteries are discussed. Lastly, the remaining challenges and further possible research directions for localized high-concentration electrolytes are outlined, which can promisingly render the practical applications of lithium metal batteries.

关键词: high-concentration electrolyte     localized high-concentration electrolyte     lithium metal battery     solid electrolyte interphase     dendrite    

Analysis of molten metal spreading and solidification behaviors utilizing moving particle full-implicit

《能源前沿(英文)》 2021年 第15卷 第4期   页码 959-973 doi: 10.1007/s11708-021-0753-0

摘要: To retrieve the fuel debris in Fukushima Daiichi Nuclear Power Plants (1F), it is essential to infer the fuel debris distribution. In particular, the molten metal spreading behavior is one of the vital phenomena in nuclear severe accidents because it determines the initial condition for further accident scenarios such as molten core concrete interaction (MCCI). In this study, the fundamental molten metal spreading experiments were performed with different outlet diameters and sample amounts to investigate the effect of the outlet for spreading-solidification behavior. In the numerical analysis, the moving particle full-implicit method (MPFI), which is one of the particle methods, was applied to simulate the spreading experiments. In the MPFI framework, the melting-solidification model including heat transfer, radiation heat loss, phase change, and solid fraction-dependent viscosity was developed and implemented. In addition, the difference in the spreading and solidification behavior due to the outlet diameters was reproduced in the calculation. The simulation results reveal the detailed solidification procedure during the molten metal spreading. It is found that the viscosity change and the solid fraction change during the spreading are key factors for the free surface condition and solidified materials. Overall, it is suggested that the MPFI method has the potential to simulate the actual nuclear melt-down phenomena in the future.

关键词: molten metal spreading     solidification     particle method     severe accident     fuel debris     decommissioning    

标题 作者 时间 类型 操作

Metal salts with highly electronegative cations as efficient catalysts for the liquid-phase nitration

Shenghui Zhou, Kuiyi You, Zhengming Yi, Pingle Liu, Hean Luo

期刊论文

Effects of two transition metal sulfate salts on secondary organic aerosol formation in toluene/NO

Biwu CHU, Jiming HAO, Junhua LI, Hideto TAKEKAWA, Kun WANG, Jingkun JIANG

期刊论文

A new regeneration approach to cation resins with aluminum salts: application of desalination by its

Zhigang LIU, Shaomin ZHU, Yansheng LI

期刊论文

Corrosion behavior of metallic alloys in molten chloride salts for thermal energy storage in concentrated

Wenjin Ding, Alexander Bonk, Thomas Bauer

期刊论文

Deep eutectic ionic liquids based on DABCO-derived quaternary ammonium salts: A promising reaction medium

Muhammad Faisal, Azeem Haider, Quret ul Aein, Aamer Saeed, Fayaz Ali Larik

期刊论文

A ternary mechanism for the facilitated transfer of metal ions onto metal–organic frameworks: implications

期刊论文

Functionalized activated carbon for the adsorptive removal of perchlorate from water solutions

Rovshan MAHMUDOV, Chinglung CHEN, Chin-Pao HUANG

期刊论文

Effects of additive NaI on electrodeposition of Al coatings in AlCl

Tianyu Yao, Haiyan Yang, Kui Wang, Haiyan Jiang, Xiao-Bo Chen, Hezhou Liu, Qudong Wang, Wenjiang Ding

期刊论文

Hierarchical porous carbon derived from one-step self-activation of zinc gluconate for symmetric supercapacitors with high energy density

期刊论文

Sustainability of metal recovery from E-waste

Biswajit Debnath, Ranjana Chowdhury, Sadhan Kumar Ghosh

期刊论文

Optimizing iodine capture performance by metal–organic framework containing with bipyridine units

期刊论文

Selective capture and separation of xenon and krypton using metal organic frameworks: a review

期刊论文

Liquid metal thermal hydraulics R&D at European scale: achievements and prospects

期刊论文

Localized high-concentration electrolytes for lithium metal batteries: progress and prospect

期刊论文

Analysis of molten metal spreading and solidification behaviors utilizing moving particle full-implicit

期刊论文